Analyzing Biomechanics Through Other Fields of Sciences

Blog5 840x420 - Analyzing Biomechanics Through Other Fields of Sciences

Biomechanics provides understanding the relationship between the human anatomy and the mechanical properties. It analyzes body movement to improve performance and decrease the risk of an individual to certain injuries.

Since the ancient period, the study of biomechanics has started to roll. Many scientists who specialize in various fields – anatomy, physiology, mathematics, biology, physics, and engineering have contributed to the understanding and knowledge of biomechanics. In the present time, more scientists have conducted their own research on how biomechanics can improve human existence. There have been various scholarly societies that unite to celebrate biomechanics and further the body of knowledge.

There are a lot of things about biomechanics that is yet to be discovered. If you are interested contributing to the knowledge of science, you should be aware of the methods of analyzing biomechanics. Further, you should utilize certain approaches and other disciplines of science to better understand what biomechanics is.

v2 - Analyzing Biomechanics Through Other Fields of Sciences

Two Methods of Research Analysis

In conducting a scientific research, there are two basic methods used in gathering data – qualitative and quantitative research. The two have different goal or aim. They also vary in usage, instruments in gathering data, approaches and the types of data, among others.

Qualitative

Qualitative research is a research method that is exploratory in nature. Its primary goal is to provide a complete and thorough explanation of the research topic. It is broader and more focused on the bigger picture of the topic. In conducting a qualitative research, the researcher can conduct in-depth interviews, engage in focus groups, analyze documentaries, use archival research or do participatory observation. This method is recommended for the earlier phases of the research.

According to Knudson & Morrison (2002), the qualitative analysis in biomechanics involves “systematic observation and introspective judgment” of the quality of human body movement in order for the researchers to identify and determine the appropriate approach and intervention in improving the performance. Qualitative analysis remains the most used approach by kinesiology professionals in understanding human movement problems.  However, it requires that the researcher is skilled with critical thinking and wide knowledge in science.

Quantitative

Quantitative research aims to generate measurable data like statistical models, percentages, figures, and numbers. It also uses systematic empirical investigation and mathematical expressions. The problem studied in quantitative analysis is more narrowed and focused. In gathering data, quantitative research employs various data-gathering strategies, including survey questionnaires. This type of research is suitable for those who want to get numerical data and clearer picture of the results.

In biomechanics, qualitative research involves the measurement of biomechanical variables. It also requires a computer to perform huge numerical calculations. It needs thousands of samples of data to be gathered, scaled and analyzed. In contrast to qualitative research, quantitative generates a more accurate, consistent and precise results that are not biased and opinionated. Most quantitative biomechanical analysis utilizes devices that measure biomechanical variables. This includes timing lights, timing mats, radar and quantitative videography systems, among others.

Five Disciplinary Categories in Understanding Biomechanics

In understanding biomechanics, other disciplines and fields of sciences are used as lens or tool to strengthen research. In the journal of Anne Atwater of the University of Arizona entitled Biomechanics: An Interdisciplinary Science, she mentioned that there are five disciplinary categories that exemplify biomechanics research. These fields of sciences are specified by the American Society of Biomechanics.

v1 - Analyzing Biomechanics Through Other Fields of Sciences

Biological Sciences

Biology is relevant in studying biomechanics, as it is where biomechanics is derived. Biomechanics who specialize in biological science work in the department of biology, zoology, anthropology and veterinary sciences, among others. Their focus of the study is to know the mechanics of animal locomotion. They understand why and how land animals walk, hop, gallop and jump; snakes crawl in the ground; fishes swim; monkeys glide and hang; etc.

Apart from animal movements, they learn the animals’ morphology, physiology, and anatomy. For example, biomechanists study the essence of the backbones of the fish in making them move in the waters. Also, fishes who have different forms of backbones have different styles and techniques of swimming. Through biomechanics, they will be able to understand the relationship of body composition or structure and movement.

Ergonomic and Human Factors

Ergonomics is defined as the applied science concerned with the design and arrangement of things that people use for efficient and safe interaction. On the other hand, the field of human factors includes how humans respond to a certain stimulus or the effects of human interaction. Biomechanists who work closely with ergonomics specialize in a variety of disciplines including industrial engineering, public health, and occupational safety.

Biomechanists study how workers, especially those engaged in heavy loads can prevent injuries in performing their risky tasks. Moreover, biomechanics will teach them the proper techniques in carrying load or pushing and pulling loads that will improve their performance and promote their safety.

Engineering and Applied Physics

Engineers are among the most active in developing a better understanding of biomechanics. Basically, engineers deal with the invention, innovation, designing, building, and development of structures. In biomechanics, instead of structures and tools, they analyze the living systems and materials. They are employed in the study of biological tissues including bones, tendons, cartilage, and ligaments. With the integration of physics, they will analyze the relationship between structure and motion in the human body. Further, biomechanists engineer devices that can be helpful in human movement.

In the 20th century, biomechanists who specialize in engineering devised prosthetic limbs to help those soldiers and victims of World War I who lost their limbs, disabling them to walk.

Health Sciences

Biomechanics is also understood through knowing the mechanisms of health sciences. Biomechanists who specialize in health sciences are found in the departments of restorative medicine, rehabilitation sciences, orthodontics, orthopedic surgery and other disciplines of science that involve human health. Biomechanics has been helpful in understanding health problems such as scoliosis, cervical spine injuries, and others.

Exercise and Sport Sciences

Lastly, biomechanics is involved in exercise and sports sciences. Biomechanists who specialize in this discipline are involved in sports medicine, exercise science, athletics, physical education, and kinesiology. Earlier, we discussed how biomechanics improve the performance of athletes and prevent them from obtaining injuries.